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The Unit of Liquidity is a value abstraction which can facilitate direct
asset-to-asset swaps both cross-chain and on-chain with the same liquidity.
This is achieved without liquidity partitions increasing the amount of liquid-
ity needed to serve large swaps or virtual liquidity increasing the market-
making cost. The Unit of liquidity is not an intermediate token the user is
exposed to or requires lock and mint bridges, it is the result of a computa-
tion based on customizable independent swap curves. It is shown that the
Balancer invariant can be replicated in an asynchronous environment, while
a flatter invariant can be fitted for stable-coin swaps.

1 Introduction

Today, autonomous market makers create liquid markets for all kinds of tokens. Current
AMMs generally work by examining on-chain variables, like token balances and swap
amount to then produce a quote. This works when the AMM can access the required
information atomically on a chain. However, it doesn’t work in a cross-chain environ-
ment where information is only available asynchronously. This inherent limitation locks
liquidity to specific chains and causes liquidity fragmentation.
Prior attempts have focused on how to adapt existing solutions or how to improve cross-
chain state synchronisation. Examples include: aggregating liquidity into a synchronous
environment [tho20], using an intermediate bridge token [HBB18], or improving state
aggregation [ZPB22]. However, these solutions make tradeoffs: Moving liquidity off-
chain further increases fragmentation and makes the liquidity unavailable for actors who
demand on-chain atomic liquidity; intermediate tokens introduce undesired exposure
to users and add uncertainty; and state aggregation dependent on liquidity partitions
reduces the maximum trade size for each additional chain, it doesn’t support atomic
swaps, and is currently limited to stable-coins.
This paper introduces an autonomous market maker based on local invariants that are
updated solely on local trade execution. Connecting the invariants defines a pool where
assets can be swapped within, independently of where assets are located. Since each
local instance is unaware of other instances, there is no state synchronisation nor an
on-chain representation of the global state. This allows pools to scale linearly with
the addition of more chains, in regards to both computation and liquidity. Furthermore,
every previously mentioned issue has been solved, meaning: No undesired exposure, both
stable-coin and volatile token support, all liquidity is available everywhere regardless of
network size and all local liquidity can be used for atomic swaps.
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2 Defining a Market Maker

The key idea behind automated market making is to price assets based on their current
supply, w. To achieve this, define a decreasing1, non-negative marginal pricing function,
P (w). The simplest way to evaluate the cost associated with a trade of size, ∆w, is
to multiply the current price by the trade size. Let ϵ(x) be some error function where
limx→0 ϵ(x) = 0, then the simple trade cost is given as:

U = ∆w · P (w1) + ϵ(∆w) (1)

As P (w) is a decreasing function, this approach only works for small ∆w as the strat-
egy doesn’t account for the price impact of changing the balance by ∆w. The error’s
dependence on the trade size can be visualised by plotting the trade against a generic
decreasing marginal price curve:

∆w

P (∆w)

(a) No subdivsions

∆w

P (∆w)

(b) With subdivisions

Figure 1: The error of the simple approach

Using the dependence on trade size, subdividing the trade size into smaller amounts
makes the error smaller.

U =
N∑
i=0

∆w

N
· P
(
w1 + i

∆w

N

)
+ ϵ

(
∆w

N

)
(2)

The intuition can be seen in figure 1b. In the limit, as N → ∞, the error incurred by
the trade goes to 0 and the equation becomes the integral of P (w) from w1 to w1+∆w.

3 The Unit of Liquidity

The trade intermediate is the intermediary which market makers match assets against.
In this paper, the trade intermediate will not be defined as an asset but rather as the
trade cost, referred to as Units. Units are not globally shared but specific to a pool2

of connected market makers. Since the trade cost is a number, Units can be abstracted

1While it is assumed the price function is decreasing, all results also apply to non-increasing price
functions.

2A pool is defined as the largest set of market makers where at least one connection exists. If two
pools contain two market makers that share a connection, the pools are sub-pools of a larger pool
containing both.
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away to allow the implementation to use existing message relayers to facilitate cross-chain
swaps.
Given a pool of n assets, {α, β, . . . , n}, define a decreasing, non-negative marginal price
function for each asset: {Pα(w), Pβ(w), . . . , Pn(w)}. The cost of trading an asset, i.e.
the Units that the trade is worth, is measured as the integral of its price function. For
some asset i, when exchanging ∆i for another asset, the Units are given by:

U =

∫ i1+∆i

i1

Pi(w) dw (3)

Within a pool, acquired Units, U , can be exchanged for any other asset. U is computed
from the reference of the initial asset, thus when evaluating the output the sign should
be inverted. When 2 assets are matched within a synchronous environment, the swaps
can be executed atomically. Examining a swap from α to β, the complete swap can
found by solving for −∆β as a function of ∆α:∫ α1+∆α

α1

Pα(w) dw = −
∫ β1+∆β

β1

Pβ(w) =

∫ β1

β1+∆β
Pβ(w) dw (4)

3.1 Unit properties

Each integral represents a local invariant. Examine 2 series of swaps from a reference
balance, α0, such that the total change in units is equal:

∑
i=1,...,n Ui =

∑
j=1,...,m U ′

j∫ αn

α0

Pα(w) dw =
∑

i=1,...,n

∫ αi

αi−1

Pα(w) dw =
∑

i=1,...,n

Ui =

∑
j=1,...,m

U ′
j =

∑
j=1,...,m

∫ αj

αj−1

Pα(w) dw =

∫ αm

α0

Pα(w) dw

(5)

Then it must hold that
∫ αm

αn
Pα(w) dw = 0. If Pα(min{αn, αm}) ̸= 0 then αn = αm.

Otherwise, using that Pα is decreasing, if it holds that Pα(min{αn, αm}) = 0 then Pα = 0
in the interval [min{αn, αm},∞) and the difference has no value and can be ignored.
It has now been proven that using Units as an intermediate between chains allows
swaps to be computed using only the local state, eliminating the need for state syn-
chronisation. Furthermore, the above property guarantees that liquidity can be accessed
asynchronously on each chain: While the execution order matters for traders, liquidity
providers are indifferent3.

4 Cross-chain Liquidity

While the integral construction has the asynchronous properties that are desired, it is
not guaranteed to be a useful abstraction unless liquidity can be managed in a way which
preserves the asynchronous properties.
To achieve this, the net debt, U [i], distribution is tracked between assets. For each
incoming and outgoing swap, the Units are added4 to the counter. A reference value
for each asset, i0, can then be defined as the asset balance at net-zero debt within the
system:

U [i] =

∫ it

i0

P (w) dw (6)

3Given that the fee is 0. If the fee is ̸= 0 the order matters.
4Incoming swaps have a negative sign and thus are subtracted
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With the introduction of net system debt and the reference balance, cross-chain liquidity
can be defined via the reference balance. Let ∆it be the change in tokens and let ∆i0
be the change to the reference balance:

U [i] =

∫ it

i0

Pi(w) dw =

∫ it+∆it

i0+∆i0

Pi(w) dw (7)

This preserves the local invariant. Since U [i] is constant outside swaps, when it is
increased from fees being deposited i0 must increase. This makes it unsuitable as a
direct record of ownership.

4.1 Vaults and Wrapping Vault Tokens

In practice, managing individual market makers is complicated. Instead, market makers
are aggregated into vaults. Vaults are specific containers which hold tokens for market
makers for each chain. Connecting vaults then define pools.
To track liquidity ownership, vault tokens representing shares of the reference value i0
are used. The share of the reference value for each liquidity provider can be found by
comparing their vault tokens, pt, with the total supply, PT .

∆i0 = i0 ·
pt

PT
(8)

In other words, owning 20% of the vault
( pt
PT = 20%

)
provides rights to 20% of i0.

To convert vault tokens into tokens, equation (7) should be used in conjunction with
equation (8).

4.2 Simplifying Unit Accounting

Keeping track of U [i] and i0 on a per-asset basis is expensive for vaults with multiple
assets. Instead, it is cheaper to keep track of the aggregated debt:

∑
i∈{α,β,... }

U [i] =
∑

i∈{α,β,... }

∫ it

i0

Pi(w) dw (9)

The equation can be restricted by examining the single case of ∀i : U [i] = 0. Pick a
reference asset, j ∈ {α, β, . . . }, then the marginal price between j and any other asset,

i, is defined as: Pi(it)
Pj(jt)

. Using (5): ∀i : U [i] = 0 =⇒ ∀i : it = i0 and the marginal price

is known and constant as Pequal
5. A relationship can be established between j and any

other asset:

Pequal =
Pi(it)

Pj(jt)
=

Pi(i0)

Pj(j0)

∃P−1
i=⇒ i0 = P−1

i (Pj(j0) · Pequal) (10)

Assuming P−1
i exists6, a closed-form solution to i0 can be found. By combining (10)

and (9), i0 can be computed on-demand.

5Pequal =
Pi(i[Ui=0])
Pj

(
j[Uj=0]

) where the notation i[Ui=0] means the balance of the asset i when Ui = 0

6Pequal defines a point on the invariant. By always measuring local liquidity against this point, liquidity
is distributed consistently across all prices.
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4.3 Pool Invariants

Given a pool of n assets, {α, β, . . . , n}, with balances {αt, βt, . . . , nt}, the pool invariant
is:

0 =
∑

i∈{α,β,...,n}

∫ it

i0

Pi(w) dw

∑
i∈{α,β,...,n}

∫ i0

Pi(w) dw = K =
∑

i∈{α,β,...,n}

∫ it

Pi(w) dw

(11)

The notation
∫ it Pi(w) dw means the antiderivative of Pi(w) evaluated at it. Notice that

for the second expression, the left side is constant during swaps which is more similar to
how CFMMs are usually written.
Examine an asset swap of asset i to asset j, with ∆i given:

K =

∫ it

Pi(w) dw +

∫ jt

Pj(w) dw (12)

K =

(∫ it+∆i

Pi(w) d(w)− U

)
+

∫ jt

Pj(w) dw (13)

K =

∫ it+∆i

Pi(w) d(w) +

(∫ jt

Pj(w) dw − U

)
(14)

K =

∫ it+∆i

Pi(w) dw +

∫ jt+∆j

Pj(w) d(w) (15)

Where U =
∫ it+∆i
it

Pi(w) d(w) =
∫ it+∆i

Pi(w) dw−
∫ it Pi(w) dw. ∆j is defined based on

U, as it would be for any swap from i to j. The pool invariant is constant before (12),
during (13) & (14) and after (15) a swap.

5 Price Curves

To materialize the theory behind Catalyst, suitable price curves that fulfil the design
criteria outlined in Section 2 are to be found. Moreover, the price curves of choice must
suit the underlying pricing characteristics of the vault’s assets. Two pricing curves are
proposed in this paper: a commonly used and well-known curve which allows the pool
to serve any price for volatile assets, and one which serves a narrow range suitable for
stable assets.

5.1 Volatile Assets

Asset pairs which aren’t price bounded require a wide price range. For this, a non-linear
price curve is selected:

P (w) =
W

w
(16)

Where w is the vault’s asset balance and W is a weight to adjust how liquidity is
distributed within a connected pool of assets.
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Swap Equations

Let there be a Catalyst pool with tokens α and β, each weighted by Wα and Wβ, and
with vault balances αt and βt respectively. The swap equations when swapping ∆α
tokens for ∆β tokens can be found by solving the generic swap equations introduced in
Section 3:

U = Wα · ln
(
αt +∆α

αt

)
(17) ∆β = βt ·

(
1− exp

(
− U

Wβ

))
(18)

The equations can be combined to form a single full-swap expression:

∆β = βt ·

(
1−

(
αt +∆α

αt

)−Wα
Wβ

)
(19)

It is recommended for full swaps to always be implemented via the split equations to
align the mathematical accuracy across the different kinds of swaps.

Swap Invariant

The invariant for the Volatile price curve can be found by using equation (11):

Kvol =
∑

i∈{α,β,...,n}

ln (it) ·Wi

exp(Kvol) =
∏

i∈{α,β,...,n}

iWi
t

(20)

The invariant can be rearranged such that the invariant of Balancer [MM19] is replicated.
This implies that Catalyst is a further generalisation of the constant product market
maker and can scale the familiar experience cross-chain.
Furthermore, since the invariant defines the balances of the market-maker, the market-
making cost of the Volatile price curve is the same as the market-making costs of Bal-
ancer.
The way the asset weights influence the invariant curve can be seen in Figure 2.

w

P (w)

Wα = 1,Wβ = 4
Wα = 1,Wβ = 2
Wα = 1,Wβ = 1
Wα = 2,Wβ = 1
Wα = 4,Wβ = 1

Figure 2: Volatile invariant curves for different weights combinations (Wα,Wβ)
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Liquidity Equations

Solving the vault debt requirement (7) for some asset α with the Volatile price curve
yields the relationship described in (21), where ∆α is the increase in the vault’s asset
balance αt, and ∆α0 is the increase of the reference value α0.

αt

α0
=

αt +∆α

α0 +∆α0
(21)

When depositing and withdrawing, the ratio between αt and α0 must remain constant.
The ratio can be rearranged to obtain an explicit relationship between the state of the
asset α within the vault (i.e. αt and α0), the change in the vault asset balance (i.e. ∆α,
that is, the amount deposited/withdrawn), and the required change in the reference
value ∆α0:

∆α0 =
α0

αt
·∆α (22)

Using (8), an expression that directly relates the vault asset balance change, ∆α, with
the vault tokens change, ∆pt, without the need for the net reference balance, α0, can be
obtained:

∆pt =
∆α

αt
· PT (23)

5.2 Stable Assets

The price curve of choice for stable assets is chosen such that its linearity can be adjusted
via an amplification parameter θ. This curve is given the amplified name, as it extends
the curve introduced for volatile assets: in the limit, as θ → 1, the price curve tends to
the volatile price curve (16). Hence, in the limit, the invariant of the amplified curve for
θ = 1 is the same as that of the volatile curve.
A weight W can again be used to customize the price curve further. In this case, the
weight has been set such that it can be used to adjust the ratio at which the stable assets
trade.

P θ(w) = (1− θ) · W

(W · w)θ
(24)

Swap Equations

Following the same steps as for the volatile price curve outlined in Section 5.1, the swap
equations for the amplified price curve can be derived:

U = (Wα · (αt +∆α))1−θ − (Wα · αt)
1−θ (25)

∆β = βt ·

1−
(
(Wβ · βt)1−θ − U

(Wβ · βt)1−θ

) 1
1−θ

 (26)

Where ∆α is the amount of token α sold for ∆β of token β. Again, the equations can
be combined:

∆β = βt ·

1−
(
(Wβ · βt)1−θ + (Wα · αt)

1−θ − (Wα · (αt +∆α))1−θ

(Wβ · βt)1−θ

) 1
1−θ

 (27)
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As with the volatile case, it is preferred to implement full swaps with the split equations.

Swap Invariant

The invariant for the amplified price curve can be found by using equation (11):

Kamp =
∑

i∈{α,β,...,n}

(Wi · it)1−θ (28)

To visualise the difference between the volatile invariant and the amplified invariant, the
invariant can be plotted against the volatile invariant.

w

P (w)

Volatile
Amp. θ = 0.6
Amp. θ = 0.3
Amp. θ = 0.0

Figure 3: The amplified price curve invariant at different amplification values compared
with the volatile price curve invariant.

Unlike the volatile price curve, the market-making costs for stable-coins is secondary
since the value of the assets is roughly always equal in value while the absolute balance
increases. Thus for market makers, liquidity usage is more important than the balance
composition and the shallower invariant achieves exactly that: Much greater liquidity
utilisation within a narrow price band.

Liquidity Equations

The vault debt (7) resolves to (29) for the amplified price curve. From this equation, the
relationship that deposits and withdrawals must obey between the vault’s asset balance
change, ∆α, and ∆α0 (which ultimately translates to vault tokens) can be derived.

(Wα · αt)
1−θ − (Wα · α0)

1−θ = (Wα · (αt +∆α))1−θ − (Wα · (α0 +∆α0))
1−θ (29)

6 Macro Equations

For large vaults, it might not be easy to acquire the exact token distribution that cur-
rently exists in the vault. As a result, users should be given the option to only deposit
a subset of the tokens within the vault. This requires deriving an equation to convert
units into vault tokens and vault tokens into units. There are different ways to find these
equations: Examining the local invariant from balance changes with swaps on the other
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side or solving the set of equations describing depositing and swaps. Below the equation
for the first approach.

∑
i∈{α,β,...,n}

∫ it+∆it

Pi(w) dw =
∑

i∈{α,β,...,n}

∫ it+∆i′t
Pi(w) dw (30)

Where ∆it should be derived from (7) and ∆i′t should be derived from (3) using Ui =
U · wi where (wi)i∈{α,β,...,n} is a specific set of variables which maximise (30) for ∆α0.
For the chosen price curves, the macro swaps have been solved and can be read in the
below table. Notice that the implementation details vary between the 2 derivations.

VolatileAssets StableAssets

pt = PT · 1− e
− U∑

i∈{α,β,... } Wi

e
− U∑

i∈{α,β,... } Wi

pt =

(N · wα1−θ
0 + U

N · wα1−θ
0

) 1
1−θ

− 1

 · PT (31)

U = ln

(
PT

PT − pt

)
·

∑
i∈{α,β,... }

Wi U = N · wα1−θ
0 ·

((
PT + pt

PT

)1−θ

− 1

)
(32)
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